FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerTus fuentes RSS

Application of in-silico drug discovery techniques to discover a novel hit for target-specific inhibition of SARS-CoV-2 Mpro’s revealed allosteric binding with MAO-B receptor: A theoretical study to find a cure for post-covid neurological disorder

by Magdi E. A. Zaki, Sami A. AL-Hussain, Aamal A. Al-Mutairi, Abdul Samad, Vijay H. Masand, Rahul G. Ingle, Vivek Digamber Rathod, Nikita Maruti Gaikwad, Summya Rashid, Pravin N. Khatale, Pramod V. Burakale, Rahul D. Jawarkar

Several studies have revealed that SARS-CoV-2 damages brain function and produces significant neurological disability. The SARS-CoV-2 coronavirus, which causes COVID-19, may infect the heart, kidneys, and brain. Recent research suggests that monoamine oxidase B (MAO-B) may be involved in metabolomics variations in delirium-prone individuals and severe SARS-CoV-2 infection. In light of this situation, we have employed a variety of computational to develop suitable QSAR model using PyDescriptor and genetic algorithm-multilinear regression (GA-MLR) models (R2 = 0.800–793, Q2LOO = 0.734–0.727, and so on) on the data set of 106 molecules whose anti-SARS-CoV-2 activity was empirically determined. QSAR models generated follow OECD standards and are predictive. QSAR model descriptors were also observed in x-ray-resolved structures. After developing a QSAR model, we did a QSAR-based virtual screening on an in-house database of 200 compounds and found a potential hit molecule. The new hit’s docking score (-8.208 kcal/mol) and PIC50 (7.85 M) demonstrated a significant affinity for SARS-CoV-2’s main protease. Based on post-covid neurodegenerative episodes in Alzheimer’s and Parkinson’s-like disorders and MAO-B’s role in neurodegeneration, the initially disclosed hit for the SARS-CoV-2 main protease was repurposed against the MAO-B receptor using receptor-based molecular docking, which yielded a docking score of -12.0 kcal/mol. This shows that the compound that inhibits SARS-CoV-2’s primary protease may bind allosterically to the MAO-B receptor. We then did molecular dynamic simulations and MMGBSA tests to confirm molecular docking analyses and quantify binding free energy. The drug-receptor complex was stable during the 150-ns MD simulation. The first computational effort to show in-silico inhibition of SARS-CoV-2 Mpro and allosteric interaction of novel inhibitors with MAO-B in post-covid neurodegenerative symptoms and other disorders. The current study seeks a novel compound that inhibits SAR’s COV-2 Mpro and perhaps binds MAO-B allosterically. Thus, this study will enable scientists design a new SARS-CoV-2 Mpro that inhibits the MAO-B receptor to treat post-covid neurological illness.

Abdominal fat depots and their association with insulin resistance in patients with type 2 diabetes

by Umesh Kumar Garg, Nitish Mathur, Rahul Sahlot, Pradeep Tiwari, Balram Sharma, Aditya Saxena, Raj Kamal Jainaw, Laxman Agarwal, Shalu Gupta, Sandeep Kumar Mathur

Background

Asian-Indians show thin fat phenotype, characterized by predominantly central deposition of excess fat. The roles of abdominal subcutaneous fat (SAT), intra-peritoneal adipose tissue, and fat depots surrounding the vital organs (IPAT-SV) and liver fat in insulin resistance (IR), type-2 diabetes (T2D) and metabolic syndrome (MetS) in this population are sparsely investigated.

Aims and objectives

Assessment of liver fat, SAT and IPAT-SV by MRI in subjects with T2D and MetS; and to investigate its correlation with IR, specifically according to different quartiles of HOMA-IR.

Methods

Eighty T2D and the equal number of age sex-matched normal glucose tolerant controls participated in this study. Abdominal SAT, IPAT-SV and liver fat were measured using MRI. IR was estimated by the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR).

Results

T2D and MetS subjects have higher quantity liver fat and IPAT-SV fat than controls (P = 9 x 10−4 and 4 x 10−4 for T2D and 10−4 and 9 x 10−3 for MetS subjects respectively). MetS subjects also have higher SAT fat mass (P = 0.012), but not the BMI adjusted SAT fat mass (P = 0.48). Higher quartiles of HOMA-IR were associated with higher BMI, W:H ratio, waist circumference, and higher liver fat mass (ANOVA Test P = 0.020, 0.030, 2 x 10−6 and 3 x 10−3 respectively with F-values 3.35, 3.04, 8.82, 4.47 respectively). In T2D and MetS subjects, HOMA-IR showed a moderately strong correlation with liver fat (r = 0.467, P −5 and r = 0.493, P −7), but not with SAT fat and IPAT-SV. However, in MetS subjects IPAT-SV fat mass showed borderline correlation with IR (r = 0.241, P r = 0.13, P = 0.26). In non-T2D and non-MetS subjects, no such correlation was seen. On analyzing the correlation between the three abdominal adipose compartment fat masses and IR according to its severity, the correlation with liver fat mass becomes stronger with increasing quartiles of HOMA-IR, and the strongest correlation is seen in the highest quartile (r = 0.59, P −3). On the other hand, SAT fat mass tended to show an inverse relation with IR with borderline negative correlation in the highest quartile (r = -0.284, P P = 0.07).

Conclusion

In individuals suffering from T2D and MetS, IR shows a trend towards positive and borderline negative correlation with liver fat and SAT fat masses respectively. The positive trend with liver fat tends to become stronger with increasing quartile of IR. Therefore, these findings support the theory that possibly exhaustion of protective compartment’s capacity to store excess fat results in its pathological deposition in liver as ectopic fat.

❌