FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerTus fuentes RSS

Physician characteristics associated with antiviral prescriptions for older adults with COVID-19 in Japan: an observational study

Por: Miyawaki · A. · Kitajima · K. · Iwata · A. · Sato · D. · Tsugawa · Y.
Objectives

Although guidelines recommend antiviral therapy for outpatients with COVID-19 who are at high risk of progressing to severe conditions, such as older adults, many patients do not receive appropriate treatment. Little is known, however, about the physician factors associated with the prescription of guideline-recommended antiviral therapy for patients with COVID-19.

Design

A cross-sectional study.

Setting

Data including outpatient visits in primary care clinics in Japan from April to August 2023.

Participants

We analysed 30 953 outpatients aged ≥65 years treated with COVID-19 (mean (SD) age, 75.0 (7.6) years; 17 652 women (57.0%)) in 1394 primary care clinics.

Outcome measures

The primary outcome was the prescription of guideline-recommended antivirals (ie, nirmatrelvir–ritonavir or molnupiravir), adjusted for patient characteristics, months of visits and regions.

Results

Antiviral prescriptions were concentrated among a small proportion of physicians; for example, the top 10% of physicians that had the largest number of nirmatrelvir–ritonavir prescriptions accounted for 92.4% of all nirmatrelvir–ritonavir prescriptions. After adjusting for potential confounders, physicians with higher patient volumes were more likely to prescribe guideline-recommended antivirals to their patients (adjusted OR (aOR) for high vs low volume, 1.76; 95% CI 1.31 to 2.38; adjusted p

Conclusions

Our findings suggest that provider-level factors, such as the clinical experience of treating the patients with COVID-19, play an important role in the appropriate prescription of antiviral medications for COVID-19 in the primary care setting.

Hydrogen attenuates endothelial glycocalyx damage associated with partial cardiopulmonary bypass in rats

by Hiroki Iwata, Takasumi Katoh, Sang Kien Truong, Tsunehisa Sato, Shingo Kawashima, Soichiro Mimuro, Yoshiki Nakajima

Cardiopulmonary bypass (CPB) causes systemic inflammation and endothelial glycocalyx damage. Hydrogen has anti-oxidant and anti-inflammatory properties; therefore, we hypothesized that hydrogen would alleviate endothelial glycocalyx damage caused by CPB. Twenty-eight male Sprague–Dawley rats were randomly divided into four groups (n = 7 per group), as follows: sham, control, 2% hydrogen, and 4% hydrogen. The rats were subjected to 90 minutes of partial CPB followed by 120 minutes of observation. In the hydrogen groups, hydrogen was administered via the ventilator and artificial lung during CPB, and via the ventilator for 60 minutes after CPB. After observation, blood collection, lung extraction, and perfusion fixation were performed, and the heart, lung, and brain endothelial glycocalyx thickness was measured by electron microscopy. The serum syndecan-1 concentration, a glycocalyx component, in the 4% hydrogen group (5.7 ± 4.4 pg/mL) was lower than in the control (19.5 ± 6.6 pg/mL) and 2% hydrogen (19.8 ± 5.0 pg/mL) groups (P P = 0.999). The endothelial glycocalyces of the heart and lung in the 4% hydrogen group were thicker than in the control group. The 4% hydrogen group had lower inflammatory cytokine concentrations (interleukin-1β and tumor necrosis factor-α) in serum and lung tissue, as well as a lower serum malondialdehyde concentration, than the control group. The 2% hydrogen group showed no significant difference in the serum syndecan-1 concentration compared with the control group. However, non-significant decreases in serum and lung tissue inflammatory cytokine concentrations, as well as in serum malondialdehyde concentration, were observed. Administration of 4% hydrogen via artificial and autologous lungs attenuated endothelial glycocalyx damage caused by partial CPB in rats, which might be mediated by the anti-inflammatory and anti-oxidant properties of hydrogen.
❌