The study aims to investigate patients' perceptions of recurrence risk associated with atrial fibrillation, with the goal of establishing a theoretical foundation for developing future measurement scale and intervention strategies.
A qualitative interview study.
Seventeen patients diagnosed with atrial fibrillation at a Grade-A tertiary hospital participated in semi-structured, in-depth interviews conducted between October and December 2024. Participants were selected via purposive sampling. The data were analysed employing thematic analysis in accordance with Colaizzi's method. The study adhered to the Consolidated Criteria for Reporting Qualitative Research checklist.
The perceptions of recurrence risk among patients with atrial fibrillation can be summarised into five themes: (1) perceived likelihood of recurrence, (2) perceived severity of recurrence, (3) perceived triggers of recurrence, (4) emotional reaction to recurrence, and (5) efficacy perception of managing recurrence risk.
Perceptions of recurrence risk among patients with atrial fibrillation are diverse and often underestimated due to limited knowledge and subjective symptom interpretation, affecting health behaviours. Understanding patients' subjective appraisals, emotions, and perceived efficacy is essential. Validated assessment tools and tailored risk communication may enhance self-management and support targeted interventions.
This study provides critical insights into how atrial fibrillation patients perceive their risk of recurrence. It also provides a theoretical foundation for creating validated assessment tools and tailoring individualised health education and intervention programmes.
Patients were involved in the study design, data collection, and interpretation of findings. Their contributions included providing feedback on the initial interview guide to ensure relevance and clarity, participating in in-depth interviews to share their lived experiences with atrial fibrillation recurrence, and offering reflections on key themes emerging from the data.
To investigate the physical activity levels of lung cancer survivors, analyse the influencing factors, and construct a predictive model for the physical activity levels of lung cancer survivors based on machine learning algorithms.
This was a cross-sectional study.
Convenience sampling was used to survey lung cancer survivors across 14 hospitals in eastern, central, and western China. Data on demographic, disease-related, health-related, physical, and psychosocial factors were also collected. Descriptive analyses were performed using SPSS 25.0, and predictors were identified through multiple logistic regression analyses. Four machine learning models—random forest, gradient boosting tree, support vector machine, and logistic regression—were developed and evaluated based on the Area Under the Curve of the Receiver Operating Characteristic (AUC-ROC), accuracy, precision, recall, and F1 score. The best model was used to create an online computational tool using Python 3.11 and Flask 3.0.3. This study was conducted and reported in accordance with the TRIPOD guidelines and checklist.
Among the 2231 participants, 670 (30%), 1185 (53.1%), and 376 (16.9%) exhibited low, moderate, and high physical activity levels, respectively. Multivariate logistic regression identified 15 independent influencing factors: residential location, geographical region, religious beliefs, histological type, treatment modality, regional lymph node stage, grip strength, 6-min walking distance, globulin, white blood cells, aspartate aminotransferase, blood urea, MDASI score, depression score, and SRAHP score. The random forest model performed best among the four algorithms, achieving AUC-ROC values of 0.86, 0.70, 0.72, and 0.67, respectively, and was used to develop an online predictive tool (URL: http://10.60.32.178:5000).
This study developed a machine learning model to predict physical activity levels in lung cancer survivors, with the random forest model demonstrating the highest accuracy and clinical utility. This tool enables the early identification of low-activity survivors, facilitating timely, personalised rehabilitation and health management.
The development of a predictive model for physical activity levels in lung cancer survivors can help clinical medical staff identify survivors with relatively low physical activity levels as early as possible. Thus, personalised rehabilitation plans can be formulated to optimise quality of life during their survival period.
Physical activity has been used as a nonpharmacological intervention in cancer patient rehabilitation plans. However, a review of past studies has shown that lung cancer survivors generally have low physical activity levels. In this study, we identified the key factors influencing physical activity among lung cancer survivors through a literature review. We constructed a prediction model for their physical activity levels using machine learning algorithms. Clinical medical staff can use this model to identify patients with low physical activity levels early and to develop personalised intervention plans to improve their quality of life during survival.
The study adhered to the relevant EQUATOR reporting guidelines, the TRIPOD Checklist for Prediction Model Development and Validation.
During the data collection phase, participants were recruited to complete the questionnaires.
The study aimed to investigate the current status of physical activity (PA) levels and associated factors among lung cancer survivors who have undergone nonsurgical treatments.
PA has been incorporated as a nonpharmacological intervention in the rehabilitation programmes of cancer patients, playing a crucial role in alleviating symptom burden and enhancing the quality of life among lung cancer survivors. Understanding the potential influencing factors of PA levels aids in formulating targeted intervention strategies.
A multicentre cross-sectional study.
Convenience sampling was utilised to survey lung cancer survivors from the respiratory and oncology departments of 12 hospitals across Eastern, Central and Western China, spanning from June 2023 to January 2024. Social demographic characteristics, disease-related features, health behaviour abilities, psychological factors and levels of PA were collected through a combination of clinical case systems used to record patients' treatment and medical conditions and self-reported questionnaires. Additionally, measurements of grip strength and the 6-min walk test were conducted for patients. Descriptive analysis, bivariate analysis and multivariate logistic regression were conducted.
Only 109 patients (16.2%) achieved high PA levels. Multivariate logistic regression analysis indicated differences in age, residential location, employment status, religion, lung cancer stage, grip strength, albumin concentration, blood urea, Anderson symptom, depression and health behaviour capacity among lung cancer survivors with varying PA levels.
Significant associations were observed between age ≥ 75 years, residing in urban areas, unemployment, absence of religious beliefs, Stage IV lung cancer, lower grip strength, lower albumin concentration, higher blood urea, higher Anderson symptom scores, lower health behaviour capacity scores, higher depression scores and lower PA levels among lung cancer survivors. These potential factors should be considered when developing PA intervention plans.
This study offers insights for developing subsequent PA intervention programmes. In clinical practice, healthcare professionals should continuously educate patients about the benefits of exercise and help them incorporate PA into their daily lives. Additionally, emphasising multidisciplinary collaboration involving physical therapists, nutritionists and mental health experts is crucial for ensuring safe and effective PA, thereby improving patients' quality of life.
Our study complies with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Checklist: cross-sectional studies.
At the phase of collecting data, participants were recruited to fill the questionnaires.
Chinese Clinical Trial Registry: ChiCTR2300072609