FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerPLOS ONE Medicine&Health

Effect of probiotics or prebiotics on thyroid function: A meta-analysis of eight randomized controlled trials

by Qinxi Shu, Chao Kang, Jiaxin Li, Zhenzhu Hou, Minfen Xiong, Xingang Wang, Hongyan Peng

Background

Microbiome-directed therapies are increasingly utilized to optimize thyroid function in both healthy individuals and those with thyroid disorders. However, recent doubts have been raised regarding the efficacy of probiotics, prebiotics, and synbiotics in improving thyroid function. This systematic review aimed to investigate the potential relationship between probiotics/prebiotics and thyroid function by analyzing the impact on thyroid hormone levels.

Methods

We conducted a comprehensive systematic review and meta-analysis of randomized controlled trials that investigated the effects of probiotics, prebiotics, and synbiotics on free triiodothyronine (fT3), free thyroxine (fT4), thyroid stimulating hormone (TSH), and thyroid stimulating hormone receptor antibody (TRAb) levels. We searched for articles from PubMed, Scopus, Web of Science, and Embase up until April 1st, 2023, without any language restriction. Quantitative data analysis was performed using a random-effects model, with standardized mean difference (SMD) and 95% confidence interval as summary statistics. The methods and results were reported according to the PRISMA2020 statement.

Results

A total of eight articles were included in this review. The meta-analysis showed no significant alterations in TSH (SMD: -0.01, 95% CI: −0.21, 0.20, P = 0.93; I2: 0.00%), fT4 (SMD: 0.04, 95% CI: −0.29, 0.21, P = 0.73; I2: 0.00%) or fT3 (SMD: 0.45, 95% CI: −0.14, 1.03, P = 0.43; I2: 78.00%), while a significant reduction in TRAb levels was observed (SMD: -0.85, 95% CI: -1.54, -0.15, P = 0.02; I2: 18.00%) following probiotics/prebiotics supplementation. No indication of publication bias was found.

Conclusions

Probiotics/prebiotics supplementation does not influence thyroid hormone levels, but may modestly reduce TRAb levels in patients with Graves’ disease.

PIK3CA regulates development of diabetes retinopathy through the PI3K/Akt/mTOR pathway

by Ruijuan Guan, Zefeng Kang, Ling Li, Xin Yan, Tianpeng Gao

Objective

To explore their association with the development of diabetes retinopathy (DR), single nucleotide polymorphism (SNP) mutations were screened out by high-throughput sequencing and validated in patients diagnosed with DR. To understand the role of PIK3CA in the pathogenesis of DR and explore the relationship between PIK3CA,phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR),and DR, the effect of PIK3CA.rs17849079 mutation was investigated in a DR cell model.

Methods

Twelve patients diagnosed with DR at the Qinghai Provincial People’s Hospital from September 2020 to June 2021 were randomly selected as the case group, while 12 healthy subjects of similar age and gender who underwent physical examination in Qinghai Provincial People’s Hospital physical examination center during the same period were randomly selected as the control group. Blood samples (2 mL) were collected from both groups using EDTA anticoagulant blood collection vessels and frozen at −20°C for future analysis. SNP mutations were detected by high-throughput sequencing, and the shortlisted candidates were subjected by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The detected SNP candidates were verified by expanding the sample size (first validation: 56 patients in the case group and 58 controls; second validation: 157 patients in the case group and 96 controls). A lentivirus vector carrying mutated or wild-type PIK3CA.rs17849079 was constructed. ARPE-19 cells were cultured in a medium supplemented with 10% fetal bovine serum (FBS) to establish a DR cell model. PIRES2-PIK3CA-MT and PIRES2-PIK3CA-WT vectors were transfected into DR model cells, which were categorized into control, mannitol, model, empty vector, PIK3CA wild-type, and PIK3CA mutant-type groups. Cell activity was detected by the cell counting kit (CCK)-8 assay, and cellular apoptosis was evaluated by flow cytometry. Glucose concentration and levels of cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β were detected using enzyme-linked immunosorbent assay kits. The expression of PIK3CA, AKT1, mTOR, and VEGF genes was detected by real-time quantitative polymerase chain reaction (RT-qPCR), while the expression of PI3K, p-PI3K, AKT1, p-AKT1, mTOR, p-mTOR, and VEGF proteins was detected by western blotting.

Results

The mutated SNPs were mainly enriched in the PI3K/AKT pathway, calcium ion pathway, and glutamatergic synaptic and cholinergic synaptic signaling pathways. Seven SNPs, including PRKCE.rs1533476, DNAH11.rs10485983, ERAP1.rs149481, KLHL1.rs1318761, APOBEC3C.rs1969643, FYN.rs11963612, and KCTD1.rs7240205, were not related to the development of DR. PIK3CA.rs17849079 was prone to C/T mutation. The risk of DR increased with the presence of the C allele and decreased in the presence of the T allele. High glucose induced the expression of PIK3CA and VEGF mRNAs as well as the expression of PI3K, p-PI3K, p-AKT1, p-mTOR, and VEGF proteins in ARPE-19 cells, which led to secretion of inflammatory factors TNF-αand IL-1, cell apoptosis, and inhibition of cell proliferation. The PIK3CA.rs17849079 C allele accelerated the progression of DR. These biological effects were inhibited when the C allele of PIK3CA.rs17849079 was mutated to T allele.

Conclusion

The mutated SNP sites in patients with DR were mainly enriched in PI3K/AKT, calcium ion, and glutamatergic synaptic and cholinergic synaptic signaling pathways. The rs17849079 allele of PIK3CA is prone to C/T mutation where the C allele increases the risk of DR. High glucose activates the expression of PIK3CA and promotes the phosphorylation of PI3K, which leads to the phosphorylation of AKT and mTOR. These effects consequently increase VEGF expression and accelerate the development of DR. The C to T allele mutation in PIK3CA.rs17849079 can play a protective role and reduce the risk of DR.

Differentiating attack-defense performance for starting and bench players during the Tokyo Olympics men’s basketball competition

by Wenping Sun, ChenSoon Chee, LianYee Kok, FongPeng Lim, Shamsulariffin Samsudin

This study aimed to explore the differences in attack-defense performance between the top and bottom teams for starting and bench players during the Tokyo Olympics men’s basketball competition, to determine the relationship between the attack-defense performance of starting and bench players and the final competition rankings, as well as with each performance indicator. The rank-sum ratio (RSR) comprehensive evaluation was employed to describe the attack-defense performance of starting and bench players. Additionally, an independent sample t-test, Spearman Rho Correlation, and Pearson Correlation were conducted to test the differences and relationships between the various variables at a 0.05 level of significance, respectively. The results indicated that the top four teams showed significant differences in the attack-defense performance of their starting players compared to the bottom four teams (p = 0.021), mainly in terms of 3-point shooting percentage (p = 0.042) and free throw shooting percentage (p = 0.044). Besides that, the attack-defense ranks of both starting players (p = 0.004, r = 0.757) and bench players (p = 0.020, r = 0.658) had a significant correlation with the final rankings. Points per game, 2-point field goal percentage, and assists had a statistically significant (pr

Polyethylene glycol precipitation is an efficient method to obtain extracellular vesicle-depleted fetal bovine serum

by Peng Wang, Onno J. Arntz, Johanna F. A. Husch, Van der Kraan P. M., Jeroen J. J. P. van den Beucken, Fons A. J. van de Loo

Mesenchymal stromal/stem cell derived-extracellular vesicles (MSC-EVs) have gained interest as drug delivery nanoparticles, having immunoregulatory and potentiating tissue repair property. To maintain growth of MSCs and obtain pure MSC-derived EVs, the culture media should contain fetal bovine serum (FBS) devoid of EVs, as the presence of FBS EVs confounds the properties of MSC-EVs. Therefore, we tested three methods: 18h ultracentrifugation (UC) and ultrafiltration (UF), which are common FBS EV depletion methods in current MSC-EV research, and polyethylene glycol (PEG) precipitation to obtain three EV depleted FBS (EVdFBS) batches, and compared them to FBS and commercial (Com) EVdFBS on human adipose stem cell (hADSC) growth, differentiation, enrichment of EVs in hADSC supernatant and their biological function on collagen metabolism. Our comparative study showed UC and UF vary in terms of depletion efficiency and do not completely deplete EVs and affects the growth-promoting quality of FBS. Specifically, FBS EV depletion was comparable between PEG (95.6%) and UF (96.6%) but less by UC (82%), as compared to FBS. FBS protein loss was markedly different among PEG (47%), UF (87%), and UC (51%), implying the ratio of EV depletion over protein loss was PEG (2.03), UF (1.11), and UC (1.61). A significant decrease of TGFβ/Smad signaling, involving in MSC growth and physiology, was observed by UF. After 96 hours of exposure to 5% FBS or 5% four different EVdFBS cell growth media, the osteogenesis ability of hADSCs was not impaired but slightly lower mRNA expression level of Col2a observed in EVdFBS media during chondrogenesis. In consistent with low confluency of hADSCs observed by optical microscope, cell proliferation in response to 5% UF EVdFBS media was inhibited significantly. Importantly, more and purer ADSCs EVs were obtained from ADSCs cultured in 5% PEG EVdFBS media, and they retained bioactive as they upregulated the expression of Col1a1, TIMP1 of human knee synovial fibroblast. Taken together, this study showed that PEG precipitation is the most efficient method to obtain EV depleted FBS for growth of MSCs, and to obtain MSC EVs with minimal FBS EV contamination.

Effect of pueraria on left ventricular remodelling in HFrEF: A systematic review and meta-analysis

by Lipeng Shi, Lumei Huang, Erqian Yin, Jingwei Deng, Xuqin Du

Background

Heart failure with reduced ejection fraction (HFrEF) is a prevalent cardiovascular disease globally, posing a significant burden on healthcare and society. Left ventricular remodelling is the primary pathology responsible for HFrEF development and progression, leading to increased morbidity and mortality. Pueraria, a traditional Chinese herbal medicine and food, is commonly used in China to treat HFrEF. Accumulating evidence suggests that pueraria can effectively reverse left ventricular remodelling in HFrEF patients. This meta-analysis aims to assess the impact of pueraria on left ventricular remodelling in HFrEF patients.

Methods

Eight electronic databases, including PubMed, EMBASE, Clinicaltrials.gov, Cochrane Library, Wanfang, CNKI, CQVIP, and CBM were searched for literature from inception to June 2023. All randomized controlled trials (RCTs) using pueraria in the treatment of HFrEF were included. The Cochrane Risk of Bias tool was utilized for RCTs’ methodological evaluation, while Review Manager 5.4.1 was used to analyze the data.

Results

Nineteen RCTs with a total of 1,911 patients (1,077 males and 834 females) were identified. Meta-analysis indicated that combination medication of pueraria and conventional medicine (CM) was superior to the CM alone in raising left ventricular ejection fraction (LVEF; MD = 6.46, 95% CI, 4.88 to 8.04, P CI, -6.55 to -3.01, P CI, -5.98 to -1.99, P CI, -185.30 to -67.03, P CI, 2.54 to 4.59, P CI, 41.77 to 89.31, P CI, 1.57 to 5.83, P = 0.0009). Regarding safety, no difference was observed for adverse events (RR = 0.59, 95% CI, 0.22 to 1.54, P = 0.28).

Conclusion

The use of pueraria combined with conventional medicine in HFrEF patients has superiority over conventional medicine alone in ameliorating cardiac function and reversing left ventricular remodeling. Moreover, combination medication has no increase in adverse drug events. Given some limitations, more prudence and high-quality clinical trials are needed in the future to verify the conclusions.

Prime editing-mediated correction of the <i>CFTR</i> W1282X mutation in iPSCs and derived airway epithelial cells

by Chao Li, Zhong Liu, Justin Anderson, Zhongyu Liu, Liping Tang, Yao Li, Ning Peng, Jianguo Chen, Xueming Liu, Lianwu Fu, Tim M. Townes, Steven M. Rowe, David M. Bedwell, Jennifer Guimbellot, Rui Zhao

A major unmet need in the cystic fibrosis (CF) therapeutic landscape is the lack of effective treatments for nonsense CFTR mutations, which affect approximately 10% of CF patients. Correction of nonsense CFTR mutations via genomic editing represents a promising therapeutic approach. In this study, we tested whether prime editing, a novel CRISPR-based genomic editing method, can be a potential therapeutic modality to correct nonsense CFTR mutations. We generated iPSCs from a CF patient homozygous for the CFTR W1282X mutation. We demonstrated that prime editing corrected one mutant allele in iPSCs, which effectively restored CFTR function in iPSC-derived airway epithelial cells and organoids. We further demonstrated that prime editing may directly repair mutations in iPSC-derived airway epithelial cells when the prime editing machinery is efficiently delivered by helper-dependent adenovirus (HDAd). Together, our data demonstrated that prime editing may potentially be applied to correct CFTR mutations such as W1282X.

Vitamin K2 (MK-7) attenuates LPS-induced acute lung injury via inhibiting inflammation, apoptosis, and ferroptosis

by Yulian Wang, Weidong Yang, Lulu Liu, Lihong Liu, Jiepeng Chen, Lili Duan, Yuyuan Li, Shuzhuang Li

Acute lung injury (ALI) is a life-threatening disease that has received considerable critical attention in the field of intensive care. This study aimed to explore the role and mechanism of vitamin K2 (VK2) in ALI. Intraperitoneal injection of 7 mg/kg LPS was used to induce ALI in mice, and VK2 injection was intragastrically administered with the dose of 0.2 and 15 mg/kg. We found that VK2 improved the pulmonary pathology, reduced myeloperoxidase (MPO) activity and levels of TNF-α and IL-6, and boosted the level of IL-10 of mice with ALI. Moreover, VK2 played a significant part in apoptosis by downregulating and upregulating Caspase-3 and Bcl-2 expressions, respectively. As for further mechanism exploration, we found that VK2 inhibited P38 MAPK signaling. Our results also showed that VK2 inhibited ferroptosis, which manifested by reducing malondialdehyde (MDA) and iron levels, increasing glutathione (GSH) level, and upregulated and downregulated glutathione peroxidase 4 (GPX4) and heme oxygenase-1 (HO-1) expressions, respectively. In addition, VK2 also inhibited elastin degradation by reducing levels of uncarboxylated matrix Gla protein (uc-MGP) and desmosine (DES). Overall, VK2 robustly alleviated ALI by inhibiting LPS-induced inflammation, apoptosis, ferroptosis, and elastin degradation, making it a potential novel therapeutic candidate for ALI.

Efficacy of mesenchymal stromal cells in the treatment of unexplained recurrent spontaneous abortion in mice: An analytical and systematic review of meta-analyses

by Xiaoxuan Zhao, Yijie Hu, Wenjun Xiao, Yiming Ma, Dan Shen, Yuepeng Jiang, Yi Shen, Suxia Wang, Jing Ma

Objectives

Unexplained recurrent spontaneous abortion (URSA) remains an intractable reproductive dilemma due to the lack of understanding of the pathogenesis. This study aimed to evaluate the preclinical evidence for the mesenchymal stromal cell (MSC) treatment for URSA.

Methods

A meticulous literature search was independently performed by two authors across the Cochrane Library, EMBASE, and PubMed databases from inception to April 9, 2023. Each study incorporated was assessed using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk of bias tool. The amalgamated standardized mean difference (SMD) accompanied by 95% confidence interval (CI) were deduced through a fixed-effects or random-effects model analysis.

Results

A total of ten studies incorporating 140 mice were subjected to data analysis. The MSC treatment yielded a significant reduction in the abortion rate within the URSA model (OR = 0.23, 95%CI [0.17, 0.3], PP = 0.01), IL10 (SMD 1.60, 95% CI [0.58, 2.61], P = 0.002), IFN-γ (SMD -1.66, 95%CI [-2.79, -0.52], P = 0.004), and TNF-α (SMD -1.98, 95% CI [-2.93, -1.04], PPP>0.05).

Conclusions

The findings underscore the considerable potential of MSCs in URSA therapy. Nonetheless, the demand for enhanced transparency in research design and direct comparisons between various MSC sources and administration routes in URSA is paramount to engendering robust evidence that could pave the way for successful clinical translation.

Heavy-tailed distributions of confirmed COVID-19 cases and deaths in spatiotemporal space

by Peng Liu, Yanyan Zheng

This paper conducts a systematic statistical analysis of the characteristics of the geographical empirical distributions for the numbers of both cumulative and daily confirmed COVID-19 cases and deaths at county, city, and state levels over a time span from January 2020 to June 2022. The mathematical heavy-tailed distributions can be used for fitting the empirical distributions observed in different temporal stages and geographical scales. The estimations of the shape parameter of the tail distributions using the Generalized Pareto Distribution also support the observations of the heavy-tailed distributions. According to the characteristics of the heavy-tailed distributions, the evolution course of the geographical empirical distributions can be divided into three distinct phases, namely the power-law phase, the lognormal phase I, and the lognormal phase II. These three phases could serve as an indicator of the severity degree of the COVID-19 pandemic within an area. The empirical results suggest important intrinsic dynamics of a human infectious virus spread in the human interconnected physical complex network. The findings extend previous empirical studies and could provide more strict constraints for current mathematical and physical modeling studies, such as the SIR model and its variants based on the theory of complex networks.

Data glove-based gesture recognition using CNN-BiLSTM model with attention mechanism

by Jiawei Wu, Peng Ren, Boming Song, Ran Zhang, Chen Zhao, Xiao Zhang

As a novel form of human machine interaction (HMI), hand gesture recognition (HGR) has garnered extensive attention and research. The majority of HGR studies are based on visual systems, inevitably encountering challenges such as depth and occlusion. On the contrary, data gloves can facilitate data collection with minimal interference in complex environments, thus becoming a research focus in fields such as medical simulation and virtual reality. To explore the application of data gloves in dynamic gesture recognition, this paper proposes a data glove-based dynamic gesture recognition model called the Attention-based CNN-BiLSTM Network (A-CBLN). In A-CBLN, the convolutional neural network (CNN) is employed to capture local features, while the bidirectional long short-term memory (BiLSTM) is used to extract contextual temporal features of gesture data. By utilizing attention mechanisms to allocate weights to gesture features, the model enhances its understanding of different gesture meanings, thereby improving recognition accuracy. We selected seven dynamic gestures as research targets and recruited 32 subjects for participation. Experimental results demonstrate that A-CBLN effectively addresses the challenge of dynamic gesture recognition, outperforming existing models and achieving optimal gesture recognition performance, with the accuracy of 95.05% and precision of 95.43% on the test dataset.

Emissions reduction strategy in a three-stage agrifood value chain: A dynamic differential game approach

by Huanhuan Wang, Xiaoli Fan, Qilan Zhao, Pengfei Cui

Agrifood systems account for 31% of global greenhouse gas emissions. Substantial emissions reduction in agrifood systems is critical to achieving the temperature goal set by the Paris Agreement. A key challenge in reducing GHG emissions in the agrifood value chain is the imbalanced allocation of benefits and costs associated with emissions reduction among agrifood value chain participants. However, only a few studies have examined agrifood emissions reduction from a value chain perspective, especially using dynamic methods to investigate participants’ long-term emissions reduction strategies. This paper helps fill this gap in the existing literature by examining the impact of collaborations among agrifood value chain participants on correcting those misallocations and reducing emissions in agrifood systems. We develop a dynamic differential game model to examine participants’ long-term emissions reduction strategies in a three-stage agrifood value chain. We use the Hamilton-Jacobi-Bellman equation to derive the Nash equilibrium emissions reduction strategies under non-cooperative, cost-sharing, and cooperative mechanisms. We then conduct numerical analysis and sensitivity analysis to validate our model. Our results show that collaboration among value chain participants leads to higher emissions reduction efforts and profits for the entire value chain. Specifically, based on our numerical results, the cooperative mechanism results in the greatest emissions reduction effort by the three participants, which leads to a total that is nearly three times higher than that of the non-cooperative mechanism and close to two times higher than the cost-sharing mechanism. The cooperative mechanism also recorded the highest profits for the entire value chain, surpassing the non-cooperative and cost-sharing mechanisms by around 37% and 16%, respectively. Our results provide valuable insights for policymakers and agrifood industry stakeholders to develop strategies and policies encouraging emissions reduction collaborations in the agrifood value chain and reduce emissions in the agrifood systems.

Promoting healthy cooking patterns in China: Analysis of consumer clusters and the evolution of cooking pattern trends

by Chuan Bo Liang, Bin Cui, Fu Rong Wang, Jing Peng, Jian Ying Ma, Mei Yin Xu, Jun Ke, Yi Tian, Zi Qi Cui

Cooking methods can change the composition of foods and have important effects on human health. The Chinese people have developed many distinct and unique cooking methods. However, the daily cooking patterns of Chinese people and the characteristics and evolution of trends in cooking patterns commonly used by Chinese consumers remain unclear. The objective of this study was to identify the major cooking patterns and discuss their effects on human health, as well as to identify the cooking pattern consumer clusters and the evolution of trends in Chinese consumer cooking patterns. From March to June 2021, this study interviewed 4,710 residents in Eastern China regarding the consumption frequency of each cooking method when food is prepared at home or when eating out. Exploratory factor analysis, K-Means cluster analysis, Chi-square test, pairwise comparisons of multiple sample rates, and multivariate linear regression were used to identify the cooking patterns and cooking pattern consumer clusters, to assess differences in consumption preferences between consumer clusters, and to examine the relationship between demographic characteristic variables and different cooking patterns. Results revealed three major cooking patterns, namely traditional Chinese (cooking methods with native Chinese characteristics), bland, and high-temperature cooking patterns, as well as seven cooking pattern consumer clusters and their demographic characteristics in the Eastern Chinese population. With increases in age, education level, and income, consumers tended to choose the healthy “Bland” cooking pattern. Further, there was a higher proportion of people aged 36–65 years in the C3 cluster, which is characterized by the “Bland” cooking pattern. However, participants who were male and younger made fewer healthy choices in their cooking patterns. Specifically, a higher proportion of participants aged 21–35 years were found in the C5 cluster, which is characterized by the unhealthy “High-temperature” cooking pattern. Therefore, culinary health education should focus on individuals who are male and young. Specifically, the shift in cooking patterns among people aged 21–35 years should receive special attention.
❌