FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerCIN: Computers, Informatics, Nursing

Perceptions of Cognitive Load and Workload in Nurse Handoffs: A Comparative Study Across Differing Patient-Nurse Ratios and Acuity Levels

imageMedical errors, often resulting from miscommunication and cognitive lapses during handoffs, account for numerous preventable deaths and patient harm annually. This research examined nurses' perceived workload and cognitive load during handoffs on hospital units with varying patient acuity levels and patient-nurse ratios. Conducted at a southeastern US medical facility, the study analyzed 20 handoff dyads using the National Aeronautics and Space Administration Task Load Index to measure perceived workload and cognitive load. Linear regressions revealed significant associations between patient acuity levels, patient-nurse ratios, and National Aeronautics and Space Administration Task Load Index subscales, specifically mental demand (P = .007) and performance (P = .008). Fisher exact test and Wilcoxon rank sum test showed no significant associations between these factors and nurses' roles (P > .05). The findings highlight the need for targeted interventions to manage workload and cognitive load, emphasizing standardized handoff protocols and technological aids. The study underscores the variability in perceived workload and cognitive load among nurses across different units. Medical-surgical units showed higher cognitive load, indicating the need for improved workload management strategies. Despite limitations, including the single-center design and small sample size, the study provides valuable insights for enhancing handoff communications and reducing medical errors.

Nurse and Physician Perceptions and Decision Making During Interdisciplinary Communication: Factors That Influence Communication Channel Selection

imageErrors in decision making and communication play a key role in poor patient outcomes. Safe patient care requires effective decision making during interdisciplinary communication through communication channels. Research on factors that influence nurse and physician decision making during interdisciplinary communication is limited. Understanding influences on nurse and physician decision making during communication channel selection is needed to support effective communication and improved patient outcomes. The purpose of the study was to explore nurse and physician perceptions of and decision-making processes for selecting interruptive or noninterruptive interdisciplinary communication channels in medical-surgical and intermediate acute care settings. Twenty-six participants (10 RNs, 10 resident physicians, and six attending physicians) participated in semistructured interviews in two acute care metropolitan hospitals for this qualitative descriptive study. The Practice Primed Decision Model guided interview question development and early data analysis. Findings include a core category, Development of Trust in the Communication Process, supported by three main themes: (1) Understanding of Patient Status Drives Communication Decision Making; (2) Previous Interdisciplinary Communication Experience Guides Channel Selection; and (3) Perceived Usefulness Influences Communication Channel Selection. Findings from this study provide support for future design and research of communication channels within the EHR and clinical decision support systems.

Utilizing Telenursing to Supplement Acute Care Nursing in an Era of Workforce Shortages: A Feasibility Pilot

imageHospitals are experiencing a nursing shortage crisis that is expected to worsen over the next decade. Acute care settings, which manage the care of very complex patients, need innovations that lessen nurses' workload burden while ensuring safe patient care and outcomes. Thus, a pilot study was conducted to evaluate the feasibility of implementing a large-scale acute care telenurse program, where a hospital-employed telenurse would complete admission and discharge processes for hospitalized patients virtually. In 3 months, almost 9000 (67%) of patient admissions and discharges were conducted by an acute care telenurse, saving the bedside nurse an average of 45 minutes for each admission and discharge. Preliminary benefits to the program included more uninterrupted time with patients, more complete hospital admission and discharge documentation, and positive patient and nurse feedback about the program.

Associations Between Psychosocial Needs, Carbohydrate-Counting Behavior, and App Satisfaction: A Randomized Crossover App Trial on 92 Adults With Diabetes

imageTo examine whether psychosocial needs in diabetes care are associated with carbohydrate counting and if carbohydrate counting is associated with satisfaction with diabetes applications' usability, a randomized crossover trial of 92 adults with type 1 or 2 diabetes requiring insulin therapy tested two top-rated diabetes applications, mySugr and OnTrack Diabetes. Survey responses on demographics, psychosocial needs (perceived competence, autonomy, and connectivity), carbohydrate-counting frequency, and application satisfaction were modeled using mixed-effect linear regressions to test associations. Participants ranged between 19 and 74 years old (mean, 54 years) and predominantly had type 2 diabetes (70%). Among the three tested domains of psychosocial needs, only competence—not autonomy or connectivity—was found to be associated with carbohydrate-counting frequency. No association between carbohydrate-counting behavior and application satisfaction was found. In conclusion, perceived competence in diabetes care is an important factor in carbohydrate counting; clinicians may improve adherence to carbohydrate counting with strategies designed to improve perceived competence. Carbohydrate-counting behavior is complex; its impact on patient satisfaction of diabetes application usability is multifactorial and warrants consideration of patient demographics such as sex as well as application features for automated carbohydrate counting.
❌