FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerTus fuentes RSS

Point-of-care haemoglobin accuracy and transfusion outcomes in non-cardiac surgery at a Canadian tertiary academic hospital: protocol for the PREMISE observational study

Por: Brousseau · K. · Monette · L. · McIsaac · D. I. · Workneh · A. · Tinmouth · A. · Shaw · J. · Ramsay · T. · Mallick · R. · Presseau · J. · Wherrett · C. · Carrier · F. M. · Fergusson · D. A. · Martel · G.
Introduction

Transfusions in surgery can be life-saving interventions, but inappropriate transfusions may lack clinical benefit and cause harm. Transfusion decision-making in surgery is complex and frequently informed by haemoglobin (Hgb) measurement in the operating room. Point-of-care testing for haemoglobin (POCT-Hgb) is increasingly relied on given its simplicity and rapid provision of results. POCT-Hgb devices lack adequate validation in the operative setting, particularly for Hgb values within the transfusion zone (60–100 g/L). This study aims to examine the accuracy of intraoperative POCT-Hgb instruments in non-cardiac surgery, and the association between POCT-Hgb measurements and transfusion decision-making.

Methods and analysis

PREMISE is an observational prospective method comparison study. Enrolment will occur when adult patients undergoing major non-cardiac surgery require POCT-Hgb, as determined by the treating team. Three concurrent POCT-Hgb results, considered as index tests, will be compared with a laboratory analysis of Hgb (lab-Hgb), considered the gold standard. Participants may have multiple POCT-Hgb measurements during surgery. The primary outcome is the difference in individual Hgb measurements between POCT-Hgb and lab-Hgb, primarily among measurements that are within the transfusion zone. Secondary outcomes include POCT-Hgb accuracy within the entire cohort, postoperative morbidity, mortality and transfusion rates. The sample size is 1750 POCT-Hgb measurements to obtain a minimum of 652 Hgb measurements

Ethics and dissemination

Institutional ethics approval has been obtained by the Ottawa Health Science Network—Research Ethics Board prior to initiating the study. Findings from this study will be published in peer-reviewed journals and presented at relevant scientific conferences. Social media will be leveraged to further disseminate the study results and engage with clinicians.

ARCHERY: a prospective observational study of artificial intelligence-based radiotherapy treatment planning for cervical, head and neck and prostate cancer - study protocol

Por: Aggarwal · A. · Court · L. E. · Hoskin · P. · Jacques · I. · Kroiss · M. · Laskar · S. · Lievens · Y. · Mallick · I. · Abdul Malik · R. · Miles · E. · Mohamad · I. · Murphy · C. · Nankivell · M. · Parkes · J. · Parmar · M. · Roach · C. · Simonds · H. · Torode · J. · Vanderstraeten · B. · Lan
Introduction

Fifty per cent of patients with cancer require radiotherapy during their disease course, however, only 10%–40% of patients in low-income and middle-income countries (LMICs) have access to it. A shortfall in specialised workforce has been identified as the most significant barrier to expanding radiotherapy capacity. Artificial intelligence (AI)-based software has been developed to automate both the delineation of anatomical target structures and the definition of the position, size and shape of the radiation beams. Proposed advantages include improved treatment accuracy, as well as a reduction in the time (from weeks to minutes) and human resources needed to deliver radiotherapy.

Methods

ARCHERY is a non-randomised prospective study to evaluate the quality and economic impact of AI-based automated radiotherapy treatment planning for cervical, head and neck, and prostate cancers, which are endemic in LMICs, and for which radiotherapy is the primary curative treatment modality. The sample size of 990 patients (330 for each cancer type) has been calculated based on an estimated 95% treatment plan acceptability rate. Time and cost savings will be analysed as secondary outcome measures using the time-driven activity-based costing model. The 48-month study will take place in six public sector cancer hospitals in India (n=2), Jordan (n=1), Malaysia (n=1) and South Africa (n=2) to support implementation of the software in LMICs.

Ethics and dissemination

The study has received ethical approval from University College London (UCL) and each of the six study sites. If the study objectives are met, the AI-based software will be offered as a not-for-profit web service to public sector state hospitals in LMICs to support expansion of high quality radiotherapy capacity, improving access to and affordability of this key modality of cancer cure and control. Public and policy engagement plans will involve patients as key partners.

❌