FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerTus fuentes RSS

Identification of IGF2 promotes skin wound healing by co‐expression analysis

Abstract

Oral mucosa is an ideal model for studying scarless wound healing. Researchers have shown that the key factors which promote scarless wound healing already exist in basal state of oral mucosa. Thus, to identify the other potential factors in basal state of oral mucosa will benefit to skin wound healing. In this study, we identified eight gene modules enriched in wound healing stages of human skin and oral mucosa through co-expression analysis, among which the module M8 was only module enriched in basal state of oral mucosa, indicating that the genes in module M8 may have key factors mediating scarless wound healing. Through bioinformatic analysis of genes in module M8, we found IGF2 may be the key factor mediating scarless wound healing of oral mucosa. Then, we purified IGF2 protein by prokaryotic expression, and we found that IGF2 could promote the proliferation and migration of HaCaT cells. Moreover, IGF2 promoted wound re-epithelialization and accelerated wound healing in a full-thickness skin wound model. Our findings identified IGF2 as a factor to promote skin wound healing which provide a potential target for wound healing therapy in clinic.

Antibiotic bone cement accelerates diabetic foot wound healing: Elucidating the role of ROCK1 protein expression

Abstract

Clinical studies indicate antibiotic bone cement with propeller flaps improves diabetic foot wound repair and reduces amputation rates, but the molecular mechanisms, particularly key proteins' role remain largely unexplored. This study assessed the efficacy of antibiotic bone cement for treating diabetic foot wounds, focusing on molecular impact on ROCK1. Sixty patients were randomized into experimental (EXP, n = 40) and control (CON, n = 20) groups, treated with antibiotic bone cement and negative pressure. Wound healing rate, amputation rate, wound secretion culture and C-reactive protein (CRP) changes, were monitored. Comprehensive molecular investigations were conducted and animal experiments were performed to further validate the findings. Statistical methods were employed to verify significant differences between the groups and treatment outcomes. The EXP group showed significant improvements in wound healing (χ2$$ {\chi}^2 $$ = 11.265, p = 0.004) and reduced amputation rates. Elevated levels of ROCK1, fibroblasts and VGF were observed in the trauma tissue post-treatment in the experimental group compared to pre-treatment and the control group (all p < 0.05). Improved trauma secretion culture and CRP were also noted in the EXP group (all p < 0.05). The study suggests that antibiotic bone cement enhances diabetic foot wound healing, possibly via upregulation of ROCK1. Further research is needed to elucidate the underlying molecular mechanisms and broader clinical implications.

❌