FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerTus fuentes RSS

The frictional energy absorber effectiveness and its impact on the pressure ulcer prevention performance of multilayer dressings

Abstract

Pressure ulcers including heel ulcers remain a global healthcare concern. This study comprehensively evaluates the biomechanical effectiveness of the market-popular ALLEVYN® LIFE multilayer dressing in preventing heel ulcers. It focuses on the contribution of the frictional sliding occurring between the non-bonded, fully independent layers of this dressing type when the dressing is protecting the body from friction and shear. The layer-on-layer sliding phenomenon, which this dressing design enables, named here the frictional energy absorber effectiveness (FEAE), absorbs approximately 30%–45% of the mechanical energy resulting from the foot weight, friction and shear acting to distort soft tissues in a supine position, thereby reducing the risk of heel ulcers. Introducing the novel theoretical FEAE formulation, new laboratory methods to quantify the FEAE and a review of relevant clinical studies, this research underlines the importance of the FEAE in protecting the heels of at-risk patients. The work builds on a decade of research published by our group in analysing and evaluating dressing designs for pressure ulcer prevention and will be useful for clinicians, manufacturers, regulators and reimbursing bodies in assessing the effectiveness of dressings indicated or considered for prophylactic use.

Testing the effectiveness of a polymeric membrane dressing in modulating the inflammation of intact, non‐injured, mechanically irritated skin

Abstract

We investigated the inflammatory (IL-1 alpha) and thermal (infrared thermography) reactions of healthy sacral skin to sustained, irritating mechanical loading. We further acquired digital photographs of the irritated skin (at the visible light domain) to assess whether infrared imaging is advantageous. For clinical context, the skin status was monitored under a polymeric membrane dressing known to modulate the inflammatory skin response. The IL-1 alpha and infrared thermography measurements were consistent in representing the skin status after 40 min of continuous irritation. Infrared thermography overpowered conventional digital photography as a contactless optical method for image processing inputs, by revealing skin irritation trends that were undetectable through digital photography in the visual light, not even with the aid of advanced image processing. The polymeric membrane dressings were shown to offer prophylactic benefits over simple polyurethane foam in the aspects of inflammation reduction and microclimate management. We also concluded that infrared thermography is a feasible method for monitoring the skin health status and the risk for pressure ulcers, as it avoids the complexity of biological marker studies and empowers visual skin assessments or digital photography of skin, both of which were shown to be insufficient for detecting the inflammatory skin status.

A robotic venous leg ulcer system reveals the benefits of negative pressure wound therapy in effective fluid handling

Abstract

We applied a market-leading, single-use negative pressure wound therapy device to a robotic venous leg ulcer system and compared its fluid handling performance with that of standard of care, superabsorbent and foam dressings and compression therapy. For each tested product, we determined a metrics of retained, residual, evaporated and (potential) leaked fluid shares, for three exudate flow regimes representing different possible clinically relevant scenarios. The single-use negative pressure wound therapy system under investigation emerged as the leading treatment option in the aspects of adequate fluid handling and consistent delivery of therapeutic-level wound-bed pressures. The superabsorbent dressing performed reasonably in fluid handling (resulting in some pooling but no leakage), however, it quickly caused excessive wound-bed pressures due to swelling, after less than a day of simulated use. The foam dressing exhibited the poorest fluid handling performance, that is, pooling in the wound-bed as well as occasional leakage, indicating potential inflammation and peri-wound skin maceration risks under real-world clinical use conditions. These laboratory findings highlight the importance of advanced robotic technology as contemporary means to simulate patient and wound behaviours and inform selection of wound care technologies and products, in ways that are impossible to achieve if relying solely on clinical trials and experience.

❌