FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerPLOS ONE Medicine&Health

DNA barcoding for the identification and authentication of medicinal deer (<i>Cervus</i> sp.) products in China

by Wenlan Li, Qiqi Ren, Jian Feng, Shiou Yih Lee, Yangyang Liu

Deer products from sika deer (Cervus nippon) and red deer (C. elaphus) are considered genuine and used for Traditional Chinese Medicine (TCM) materials in China. Deer has a very high economic and ornamental value, resulting in the formation of a characteristic deer industry in the prescription preparation of traditional Chinese medicine, health food, cosmetics, and other areas of development and utilization. Due to the high demand for deer products, the products are expensive and have limited production, but the legal use of deer is limited to only two species of sika deer and red deer; other wild deer are prohibited from hunting, so there are numerous cases of mixing and adulteration of counterfeit products and so on. There have been many reports that other animal (pig, cow, sheep, etc.) tissues or organs are often used for adulteration and confusion, resulting in poor efficacy of deer traditional medicine and trade fraud in deer products. To authenticate the deer products in a rapid and effective manner, the analysis used 22 deer products (antler, meat, bone, fetus, penis, tail, skin, and wool) that were in the form of blind samples. Total DNA extraction using a modified protocol successfully yielded DNA from the blind samples that was useful for PCR. Three candidate DNA barcoding loci, cox1, Cyt b, and rrn12, were evaluated for their discrimination strength through BLAST and phylogenetic clustering analyses. For the BLAST analysis, the 22 blind samples obtained 100% match identity across the three gene loci tested. It was revealed that 12 blind samples were correctly labeled for their species of origin, while three blind samples that were thought to originate from red deer were identified as C. nippon, and seven blind samples that were thought to originate from sika deer were identified as C. elaphus, Dama dama, and Rangifer tarandus. DNA barcoding analysis showed that all three gene loci were able to distinguish the two Cervus species and to identify the presence of adulterant species. The DNA barcoding technique was able to provide a useful and sensitive approach in identifying the species of origin in deer products.

U-shaped association between serum triglyceride levels and mortality among septic patients: An analysis based on the MIMIC-IV database

by Min Xiao, Hongbin Deng, Wenjian Mao, Yang Liu, Qi Yang, Yuxiu Liu, Jiemei Fan, Weiqin Li, Dadong Liu

Background

Sepsis is characterized by upregulated lipolysis in adipose tissue and a high blood triglyceride (TG) level. It is still debated whether serum TG level is related to mortality in septic patients. The aim of this study is to investigate the association between serum TG level and mortality in septic patients admitted to the intensive care unit (ICU).

Methods

Data from adult septic patients (≥18 years) admitted to the ICU for the first time were obtained from the Multiparameter Intelligent Monitoring in Intensive Care IV (MIMIC-IV) database. The patients’ serum TG levels that were measured within the first week after ICU admission were extracted for statistical analysis. The endpoints were 28-day, ICU and in-hospital mortality.

Results

A total of 2,782 septic patients were included. Univariate analysis indicated that the relationship between serum TG levels and the risk of mortality was significantly nonlinear. Both the Lowess smoothing technique and restricted cubic spline analyses revealed a U-shaped association between serum TG levels and mortality among septic patients. The lowest mortality rate was associated with a serum TG level of 300–500 mg/dL. Using 300∼500 mg/dL as the reference range, we found that both hypo-TG ( Conclusions

There was a U-shaped association between serum TG and mortality in septic ICU patients. The optimal concentration of serum TG levels in septic ICU patients is 300–500 mg/dL.

❌