FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerPLOS ONE Medicine&Health

Prime editing-mediated correction of the <i>CFTR</i> W1282X mutation in iPSCs and derived airway epithelial cells

by Chao Li, Zhong Liu, Justin Anderson, Zhongyu Liu, Liping Tang, Yao Li, Ning Peng, Jianguo Chen, Xueming Liu, Lianwu Fu, Tim M. Townes, Steven M. Rowe, David M. Bedwell, Jennifer Guimbellot, Rui Zhao

A major unmet need in the cystic fibrosis (CF) therapeutic landscape is the lack of effective treatments for nonsense CFTR mutations, which affect approximately 10% of CF patients. Correction of nonsense CFTR mutations via genomic editing represents a promising therapeutic approach. In this study, we tested whether prime editing, a novel CRISPR-based genomic editing method, can be a potential therapeutic modality to correct nonsense CFTR mutations. We generated iPSCs from a CF patient homozygous for the CFTR W1282X mutation. We demonstrated that prime editing corrected one mutant allele in iPSCs, which effectively restored CFTR function in iPSC-derived airway epithelial cells and organoids. We further demonstrated that prime editing may directly repair mutations in iPSC-derived airway epithelial cells when the prime editing machinery is efficiently delivered by helper-dependent adenovirus (HDAd). Together, our data demonstrated that prime editing may potentially be applied to correct CFTR mutations such as W1282X.

Vitamin K2 (MK-7) attenuates LPS-induced acute lung injury via inhibiting inflammation, apoptosis, and ferroptosis

by Yulian Wang, Weidong Yang, Lulu Liu, Lihong Liu, Jiepeng Chen, Lili Duan, Yuyuan Li, Shuzhuang Li

Acute lung injury (ALI) is a life-threatening disease that has received considerable critical attention in the field of intensive care. This study aimed to explore the role and mechanism of vitamin K2 (VK2) in ALI. Intraperitoneal injection of 7 mg/kg LPS was used to induce ALI in mice, and VK2 injection was intragastrically administered with the dose of 0.2 and 15 mg/kg. We found that VK2 improved the pulmonary pathology, reduced myeloperoxidase (MPO) activity and levels of TNF-α and IL-6, and boosted the level of IL-10 of mice with ALI. Moreover, VK2 played a significant part in apoptosis by downregulating and upregulating Caspase-3 and Bcl-2 expressions, respectively. As for further mechanism exploration, we found that VK2 inhibited P38 MAPK signaling. Our results also showed that VK2 inhibited ferroptosis, which manifested by reducing malondialdehyde (MDA) and iron levels, increasing glutathione (GSH) level, and upregulated and downregulated glutathione peroxidase 4 (GPX4) and heme oxygenase-1 (HO-1) expressions, respectively. In addition, VK2 also inhibited elastin degradation by reducing levels of uncarboxylated matrix Gla protein (uc-MGP) and desmosine (DES). Overall, VK2 robustly alleviated ALI by inhibiting LPS-induced inflammation, apoptosis, ferroptosis, and elastin degradation, making it a potential novel therapeutic candidate for ALI.

Long non-coding RNA SNHG17 may function as a competitive endogenous RNA in diffuse large B-cell lymphoma progression by sponging miR-34a-5p

by Shengjuan Lu, Lin Zeng, Guojun Mo, Danqing Lei, Yuanhong Li, Guodi Ou, Hailian Wu, Jie Sun, Chao Rong, Sha He, Dani Zhong, Qing Ke, Qingmei Zhang, Xiaohong Tan, Hong Cen, Xiaoxun Xie, Chengcheng Liao

We investigated the functional mechanism of long non-coding small nucleolar host gene 17 (SNHG17) in diffuse large B-cell lymphoma (DLBCL). lncRNAs related to the prognosis of patients with DLBCL were screened to analyze long non-coding small nucleolar host gene 17 (SNHG17) expression in DLBCL and normal tissues, and a nomogram established for predicting DLBCL prognosis. SNHG17 expression in B-cell lymphoma cells was detected using qPCR. The effects of SNHG17 with/without doxorubicin on the proliferation and apoptosis of DoHH2 and Daudi were detected. The effects of combined SNHG17 and doxorubicin were analyzed. The regulatory function of SNHG17 in DLBCL was investigated using a mouse tumor xenotransplantation model. RNA sequencing was used to analyze the signaling pathways involved in SNHG17 knockdown in B-cell lymphoma cell lines. The target relationships among SNHG17, microRNA, and downstream mRNA biomolecules were detected. A higher SNHG17 level predicted a lower survival rate. SNHG17 was highly expressed in DLBCL patient tissues and cell lines. We established a prognostic model containing SNHG17 expression, which could effectively predict the overall survival rate of DLBCL patients. SNHG17 knockdown inhibited the proliferation and induced the apoptosis of B-cell lymphoma cells, and the combination of SNHG17 and doxorubicin had a synergistic effect. SNHG17, miR-34a-5p, and ZESTE gene enhancer homolog 2 (EZH2) had common hypothetical binding sites, and the luciferase reporter assay verified that miR-34a-5p was the direct target of SNHG17, and EZH2 was the direct target of miR-34a-5p. The carcinogenic function of SNHG17 in the proliferation and apoptosis of DLBCL cells was partially reversed by a miR-34a-5p inhibitor. SNHG17 increases EZH2 levels by inhibiting miR-34a-5p. Our findings indicate SNHG17 as critical for promoting DLBCL progression by regulating the EZH2 signaling pathway and sponging miR-34a-5p. These findings provide a new prognostic marker and therapeutic target for the prognosis and treatment of DLBCL.
❌