FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerCIN: Computers, Informatics, Nursing

Artificial Intelligence and the National Violent Death Reporting System: A Rapid Review

imageAs the awareness on violent deaths from guns, drugs, and suicides emerges as a public health crisis in the United States, attempts to prevent injury and mortality through nursing research are critical. The National Violent Death Reporting System provides public health surveillance of US violent deaths; however, understanding the National Violent Death Reporting System's research utility is limited. The purpose of our rapid review of the 2019-2023 literature was to understand to what extent artificial intelligence methods are being used with the National Violent Death Reporting System. We identified 16 National Violent Death Reporting System artificial intelligence studies, with more than half published after 2020. The text-rich content of National Violent Death Reporting System enabled researchers to center their artificial intelligence approaches mostly on natural language processing (50%) or natural language processing and machine learning (37%). Significant heterogeneity in approaches, techniques, and processes was noted across the studies, with critical methods information often lacking. The aims and focus of National Violent Death Reporting System studies were homogeneous and mostly examined suicide among nurses and older adults. Our findings suggested that artificial intelligence is a promising approach to the National Violent Death Reporting System data with significant untapped potential in its use. Artificial intelligence may prove to be a powerful tool enabling nursing scholars and practitioners to reduce the number of preventable, violent deaths.

Clinical Knowledge Model for the Prevention of Healthcare-Associated Venous Thromboembolism

imageKnowledge models inform organizational behavior through the logical association of documentation processes, definitions, data elements, and value sets. The development of a well-designed knowledge model allows for the reuse of electronic health record data to promote efficiency in practice, data interoperability, and the extensibility of data to new capabilities or functionality such as clinical decision support, quality improvement, and research. The purpose of this article is to describe the development and validation of a knowledge model for healthcare-associated venous thromboembolism prevention. The team used FloMap, an Internet-based survey resource, to compare metadata from six healthcare organizations to an initial draft model. The team used consensus decision-making over time to compare survey results. The resulting model included seven panels, 41 questions, and 231 values. A second validation step included completion of an Internet-based survey with 26 staff nurse respondents representing 15 healthcare organizations, two electronic health record vendors, and one academic institution. The final knowledge model contained nine Logical Observation Identifiers Names and Codes panels, 32 concepts, and 195 values representing an additional six panels (groupings), 15 concepts (questions), and the specification of 195 values (answers). The final model is useful for consistent documentation to demonstrate the contribution of nursing practice to the prevention of venous thromboembolism.
❌