FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerCIN: Computers, Informatics, Nursing

Enhancing Chronic Pain Nursing Diagnosis Through Machine Learning: A Performance Evaluation

imageThis study proposes an evaluation of the efficacy of machine learning algorithms in classifying chronic pain based on Italian nursing notes, contributing to the integration of artificial intelligence tools in healthcare within an Italian linguistic context. The research aimed to validate the nursing diagnosis of chronic pain and explore the potential of artificial intelligence (AI) in enhancing clinical decision-making in Italian healthcare settings. Three machine learning algorithms—XGBoost, gradient boosting, and BERT—were optimized through a grid search approach to identify the most suitable hyperparameters for each model. Therefore, the performance of the algorithms was evaluated and compared using Cohen's κ coefficient. This statistical measure assesses the level of agreement between the predicted classifications and the actual data labels. Results demonstrated XGBoost's superior performance, whereas BERT showed potential in handling complex Italian language structures despite data volume and domain specificity limitations. The study highlights the importance of algorithm selection in clinical applications and the potential of machine learning in healthcare, specifically addressing the challenges of Italian medical language processing. This work contributes to the growing field of artificial intelligence in nursing, offering insights into the challenges and opportunities of implementing machine learning in Italian clinical practice. Future research could explore integrating multimodal data, combining text analysis with physiological signals and imaging data, to create more comprehensive and accurate chronic pain classification models tailored to the Italian healthcare system.

A Systematic Review of Nurses' Perceptions of Electronic Health Record Usability Based on the Human Factor Goals of Satisfaction, Performance, and Safety

imageThe poor usability of electronic health records contributes to increased nurses' workload, workarounds, and potential threats to patient safety. Understanding nurses' perceptions of electronic health record usability and incorporating human factors engineering principles are essential for improving electronic health records and aligning them with nursing workflows. This review aimed to synthesize studies focused on nurses' perceived electronic health record usability and categorize the findings in alignment with three human factor goals: satisfaction, performance, and safety. This systematic review was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analysis. Five hundred forty-nine studies were identified from January 2009 to June 2023. Twenty-one studies were included in this review. The majority of the studies utilized reliable and validated questionnaires (n = 15) to capture the viewpoints of hospital-based nurses (n = 20). When categorizing usability-related findings according to the goals of good human factor design, namely, improving satisfaction, performance, and safety, studies used performance-related measures most. Only four studies measured safety-related aspects of electronic health record usability. Electronic health record redesign is necessary to improve nurses' perceptions of electronic health record usability, but future efforts should systematically address all three goals of good human factor design.
❌