FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerTus fuentes RSS

Visualization of the relationship between macrophage and wound healing from the perspective of bibliometric analysis

Abstract

Macrophages play a crucial role in aiding all phases of the wound-healing process and has garnered increasing attention recently. Although a substantial body of related studies has been published, there remains a lack of comprehensive bibliometric analysis. In this study, we collected 4296 papers from the Web of Science Core Collection database. Three tools including CiteSpace, VOSviewer and one online analytical platform were employed to conduct bibliometric analysis and data visualization. Our results revealed that the annual number of publications related to macrophage and wound healing has increased exponentially with the year. The United States and China stand as the primary driving forces within this field, collectively constituting 58.2% of the total publication output. The application of biomaterials was one of the most concerned research areas in this field. According to references analysis, the current research focus has shifted to diabetic wound healing and regulating macrophage polarization. Based on the keywords analysis, we identified the following research frontiers in the future: exosomes and other extracellular vesicles; bio-derived materials and drug delivery methods such as nanoparticles, scaffolds and hydrogels; immunomodulation and macrophage polarization in the M2-state; chronic wounds, particularly those associated with diabetes; antimicrobial peptides; and antioxidant. Additionally, TNF, IL-6, IL-10, TGF-β1 and VEGF ranked as the five genes that have garnered the most research attention in the intersection of macrophage and wound healing. All in all, our findings offered researchers a holistic view of the ongoing progress in the field of macrophages and wound healing, serving as a valuable reference for scholars and policymakers in this domain.

❌