FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerTus fuentes RSS

Quercetin and its derivatives for wound healing in rats/mice: Evidence from animal studies and insight into molecular mechanisms

Abstract

Aimed to clarify the effect of quercetin and its derivatives on wound healing in animal experiments. PubMed, Embase, Science Direct, Web of Science, SinoMed, Vip Journal Integration Platform, China National Knowledge Infrastructure and WanFang databases were searched for animal experiments investigating the effect of quercetin and its derivatives on wound healing to April 2023. The Review Manager 5.4 software was used to conduct meta-analysis. Eighteen studies were enrolled in this article. According to the SYRCLE's RoB tool assessment, these studies exposed relatively low methodological quality. It was shown that animals with cutaneous wound receiving quercetin had faster wound healing in wound closure (%) than the control group. Moreover, the difference in efficacy gradually emerged after third day (WMD = 7.13 [5.52, 8.74]), with a peak reached on the tenth day after wounding (WMD = 19.78 [17.82, 21.74]). Subgroup analysis revealed that quercetin for wound closure (%) was independent of the types of rats and mice, wound area and with or without diabetes. Clear conclusion was also shown regarding the external application of quercetin for wound healing (WMD = 17.77 [11.11, 24.43]). A significant reduction in the distribution of inflammatory cells occurred in the quercetin group. Quercetin could increase blood vessel density (WMD = 1.85 [0.68, −3.02]), fibroblast distribution and collagen fraction. Biochemical indicators, including IL-1β, IL-10, TNF-α, TGF-β, vascular endothelial growth factor (VEGF), hydroxyproline and alpha-smooth muscle actin (α-SMA), had the consistent results. Quercetin and its derivatives could promote the recovery of cutaneous wound in animals, through inhibiting inflammatory response and accelerating angiogenesis, proliferation of fibroblast and collagen deposition.

❌