FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerTus fuentes RSS

The efficacy of ferroptosis-inducing compounds IKE and RSL3 correlates with the expression of ferroptotic pathway regulators CD71 and SLC7A11 in biliary tract cancer cells

by Dino Bekric, Tobias Kiesslich, Matthias Ocker, Martina Winklmayr, Markus Ritter, Heidemarie Dobias, Marlena Beyreis, Daniel Neureiter, Christian Mayr

Introduction

Biliary tract cancer (BTC) is a lethal disease with a bad overall survivability, partly arising from inadequate therapeutic alternatives, detection at a belated stage, and a resistance to common therapeutic approaches. Ferroptosis is a form of programmed cell death that depends on reactive oxygen species (ROS) and iron, causing excessive peroxidation of polyunsaturated fatty acids (PUFAs). Therefore, the objective of this investigation is, whether ferroptosis can be induced in BTC in vitro and whether this induction is dependent on specific molecular markers.

Methods

The study conducted resazurin assay and IC25/50 calculation to explore the possible cytotoxic outcomes of different classes of ferroptosis-inducing substances (FINs) on a comprehensive in vitro model of 11 BTC cell lines. Combinatory treatments with different cell death inhibitors were performed to evaluate the magnitude of ferroptosis induction. To ascertain whether ferroptotic cell death occurred, liperfluo and iron assay kits were employed to evaluate lipid ROS and intracellular iron abundance. Potential biomarkers of ferroptosis sensitivity were then assessed via western blot analysis, a rtPCR panel and functional assay kits.

Results

The study found that different FINs reduced cell viability in a cell line-dependent manner. In addition, we measured increased lipid ROS and intracellular Fe2+ levels upon exposure to FINs in BTC cells. Combining FINs with inhibitors of ferroptosis, necroptosis or apoptosis suggests the occurrence of ferroptotic events in BTC cell lines CCC-5, HuH-28 and KKU-055. Furthermore, we found that BTC cells display a heterogeneous profile regarding different molecular genes/markers of ferroptosis. Subsequent analysis revealed that sensitivity of BTC cells towards IKE and RSL3 positively correlated with CD71 and SLC7A11 protein expression.

Conclusion

Our results demonstrate that induction of ferroptosis is a promising approach to inhibit BTC cell growth and that the sensitivity of BTC cells towards ferroptosis induction might be dependent on molecular markers such as CD71 and SLC7A11.

Supporting regional pandemic management by enabling self-service reporting—A case report

by Richard Gebler, Martin Lehmann, Maik Löwe, Mirko Gruhl, Markus Wolfien, Miriam Goldammer, Franziska Bathelt, Jens Karschau, Andreas Hasselberg, Veronika Bierbaum, Toni Lange, Katja Polotzek, Hanns-Christoph Held, Michael Albrecht, Jochen Schmitt, Martin Sedlmayr

Background

The COVID-19 pandemic revealed a need for better collaboration among research, care, and management in Germany as well as globally. Initially, there was a high demand for broad data collection across Germany, but as the pandemic evolved, localized data became increasingly necessary. Customized dashboards and tools were rapidly developed to provide timely and accurate information. In Saxony, the DISPENSE project was created to predict short-term hospital bed capacity demands, and while it was successful, continuous adjustments and the initial monolithic system architecture of the application made it difficult to customize and scale.

Methods

To analyze the current state of the DISPENSE tool, we conducted an in-depth analysis of the data processing steps and identified data flows underlying users’ metrics and dashboards. We also conducted a workshop to understand the different views and constraints of specific user groups, and brought together and clustered the information according to content-related service areas to determine functionality-related service groups. Based on this analysis, we developed a concept for the system architecture, modularized the main services by assigning specialized applications and integrated them into the existing system, allowing for self-service reporting and evaluation of the expert groups’ needs.

Results

We analyzed the applications’ dataflow and identified specific user groups. The functionalities of the monolithic application were divided into specific service groups for data processing, data storage, predictions, content visualization, and user management. After composition and implementation, we evaluated the new system architecture against the initial requirements by enabling self-service reporting to the users.

Discussion

By modularizing the monolithic application and creating a more flexible system, the challenges of rapidly changing requirements, growing need for information, and high administrative efforts were addressed.

Conclusion

We demonstrated an improved adaptation towards the needs of various user groups, increased efficiency, and reduced burden on administrators, while also enabling self-service functionalities and specialization of single applications on individual service groups.

Epigenetic repression of antiviral genes by SARS-CoV-2 NSP1

by Dimitrios G. Anastasakis, Daniel Benhalevy, Nicolas Çuburu, Nihal Altan-Bonnet, Markus Hafner

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades the innate immune machinery through multiple viral proteins, including nonstructural protein 1 (NSP1). While NSP1 is known to suppress translation of host mRNAs, the mechanisms underlying its immune evasion properties remain elusive. By integrating RNA-seq, ribosome footprinting, and ChIP-seq in A549 cells we found that NSP1 predominantly represses transcription of immune-related genes by favoring Histone 3 Lysine 9 dimethylation (H3K9me2). G9a/GLP H3K9 methyltransferase inhibitor UNC0638 restored expression of antiviral genes and restricted SARS-CoV-2 replication. Our multi-omics study unravels an epigenetic mechanism underlying host immune evasion by SARS-CoV-2 NSP1. Elucidating the factors involved in this phenomenon, may have implications for understanding and treating viral infections and other immunomodulatory diseases.

Evaluating deep learning-based melanoma classification using immunohistochemistry and routine histology: A three center study

by Christoph Wies, Lucas Schneider, Sarah Haggenmüller, Tabea-Clara Bucher, Sarah Hobelsberger, Markus V. Heppt, Gerardo Ferrara, Eva I. Krieghoff-Henning, Titus J. Brinker

Pathologists routinely use immunohistochemical (IHC)-stained tissue slides against MelanA in addition to hematoxylin and eosin (H&E)-stained slides to improve their accuracy in diagnosing melanomas. The use of diagnostic Deep Learning (DL)-based support systems for automated examination of tissue morphology and cellular composition has been well studied in standard H&E-stained tissue slides. In contrast, there are few studies that analyze IHC slides using DL. Therefore, we investigated the separate and joint performance of ResNets trained on MelanA and corresponding H&E-stained slides. The MelanA classifier achieved an area under receiver operating characteristics curve (AUROC) of 0.82 and 0.74 on out of distribution (OOD)-datasets, similar to the H&E-based benchmark classification of 0.81 and 0.75, respectively. A combined classifier using MelanA and H&E achieved AUROCs of 0.85 and 0.81 on the OOD datasets. DL MelanA-based assistance systems show the same performance as the benchmark H&E classification and may be improved by multi stain classification to assist pathologists in their clinical routine.

Associations of production characteristics with the on-farm presence of <i>Fasciola hepatica</i> in dairy cows vary across production levels and indicate differences between breeds

by Andreas W. Oehm, Yury Zablotski, Martina Hoedemaker, Amely Campe, Christina Strube, Daniela Jordan, Andrea Springer, Markus Klawitter, Gabriela Knubben-Schweizer

Fasciola hepatica is one of the economically most important endoparasites in cattle production. The aim of the present work was to evaluate the relevance of production level on the associations of on-farm presence of F. hepatica with farm-level milk yield, milk fat, and milk protein in Holstein cows, a specialised dairy breed, and in Simmental cows, a dual purpose breed. Furthermore, we investigated whether differential associations were present depending on breed. Data from 560 dairy farms across Germany housing 93,672 cows were analysed. The presence of F. hepatica antibodies was determined via ELISA on bulk tank milk samples. Quantile regression was applied to model the median difference in milk yield, milk fat, and milk protein depending on the interaction of breed and fluke occurrence. Whereas a reduction in milk yield (-1,206 kg, p F. hepatica positive German Holstein farms, only milk fat (-33.8 kg, p = 0.01) and milk protein (-22.6 kg, p = 0.03) were affected on F. hepatica positive German Simmental farms. Subsequently, production traits were modelled within each of the two breeds for low, medium, and high producing farms in the presence of F. hepatica antibodies and of confounders. On Holstein farms, the presence of F. hepatica seropositivity was associated with lower production, while on German Simmental farms such an association was less evident. This work demonstrates that production level is relevant when assessing the associations between the exposure to F. hepatica with production characteristics. Moreover, both models indicate a breed dependence. This could point towards a differential F. hepatica resilience of specialised dairy breeds in comparison with dual purpose breeds.
❌